Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 267
Filtrar
1.
Life Sci Alliance ; 7(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38570189

RESUMO

Crumbs homolog 1 (CRB1) is one of the key genes linked to retinitis pigmentosa and Leber congenital amaurosis, which are characterized by a high clinical heterogeneity. The Crumbs family member CRB2 has a similar protein structure to CRB1, and in zebrafish, Crb2 has been shown to interact through the extracellular domain. Here, we show that CRB1 and CRB2 co-localize in the human retina and human iPSC-derived retinal organoids. In retina-specific pull-downs, CRB1 was enriched in CRB2 samples, supporting a CRB1-CRB2 interaction. Furthermore, novel interactors of the crumbs complex were identified, representing a retina-derived protein interaction network. Using co-immunoprecipitation, we further demonstrate that human canonical CRB1 interacts with CRB1 and CRB2, but not with CRB3, which lacks an extracellular domain. Next, we explored how missense mutations in the extracellular domain affect CRB1-CRB2 interactions. We observed no or a mild loss of CRB1-CRB2 interaction, when interrogating various CRB1 or CRB2 missense mutants in vitro. Taken together, our results show a stable interaction of human canonical CRB2 and CRB1 in the retina.


Assuntos
Amaurose Congênita de Leber , Retinite Pigmentosa , Animais , Humanos , Peixe-Zebra/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Retina/metabolismo , Retinite Pigmentosa/genética , Retinite Pigmentosa/metabolismo , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Transporte/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-38626355

RESUMO

RATIONALE: Bronchiectasis is a pathological dilatation of the bronchi in the respiratory airways associated with environmental or genetic causes (e.g., cystic fibrosis, primary ciliary dyskinesia and primary immunodeficiency disorders), but most cases remain idiopathic. OBJECTIVES: To identify novel genetic defects in unsolved cases of bronchiectasis presenting with severe rhinosinusitis, nasal polyposis, and pulmonary Pseudomonas aeruginosa infection. METHODS: DNA was analyzed by next-generation or targeted Sanger sequencing. RNA was analyzed by quantitative PCR and single-cell RNA sequencing. Patient-derived, cells, cell cultures and secretions (mucus, saliva, seminal fluid) were analyzed by Western blotting and immunofluorescence microscopy, and mucociliary activity was measured. Blood serum was analyzed by electrochemiluminescence immunoassay. Protein structure and proteomic analyses were used to assess the impact of a disease-causing founder variant. MEASUREMENTS AND MAIN RESULTS: We identified bi-allelic pathogenic variants in WFDC2 in 11 individuals from 10 unrelated families originating from the United States, Europe, Asia, and Africa. Expression of WFDC2 was detected predominantly in secretory cells of control airway epithelium and also in submucosal glands. We demonstrate that WFDC2 is below the limit of detection in blood serum and hardly detectable in samples of saliva, seminal fluid, and airway surface liquid from WFDC2-deficient individuals. Computer simulations and deglycosylation assays indicate that the disease-causing founder variant p.Cys49Arg structurally hampers glycosylation and thus secretion of mature WFDC2. CONCLUSIONS: WFDC2 dysfunction defines a novel molecular etiology of bronchiectasis characterized by the deficiency of a secreted component of the airways. A commercially available blood test combined with genetic testing allows its diagnosis. This article is open access and distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).

3.
Int J Mol Sci ; 25(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38338908

RESUMO

Neurons build vast gap junction-coupled networks (GJ-nets) that are permeable to ions or small molecules, enabling lateral signaling. Herein, we investigate (1) the effect of blinding diseases on GJ-nets in mouse retinas and (2) the impact of electrical stimulation on GJ permeability. GJ permeability was traced in the acute retinal explants of blind retinal degeneration 1 (rd1) mice using the GJ tracer neurobiotin. The tracer was introduced via the edge cut method into the GJ-net, and its spread was visualized in histological preparations (fluorescent tagged) using microscopy. Sustained stimulation was applied to modulate GJ permeability using a single large electrode. Our findings are: (1) The blind rd1 retinas displayed extensive intercellular coupling via open GJs. Three GJ-nets were identified: horizontal, amacrine, and ganglion cell networks. (2) Sustained stimulation significantly diminished the tracer spread through the GJs in all the cell layers, as occurs with pharmaceutical inhibition with carbenoxolone. We concluded that the GJ-nets of rd1 retinas remain coupled and functional after blinding disease and that their permeability is regulatable by sustained stimulation. These findings are essential for understanding molecular signaling in diseases over coupled networks and therapeutic approaches using electrical implants, such as eliciting visual sensations or suppressing cortical seizures.


Assuntos
Degeneração Retiniana , Animais , Camundongos , Degeneração Retiniana/terapia , Degeneração Retiniana/patologia , Retina/patologia , Junções Comunicantes , Estimulação Elétrica , Permeabilidade
4.
Mol Cell Proteomics ; 23(1): 100701, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38122899

RESUMO

Alström syndrome (ALMS) is a very rare autosomal-recessive disorder, causing a broad range of clinical defects most notably retinal degeneration, type 2 diabetes, and truncal obesity. The ALMS1 gene encodes a complex and huge ∼0.5 MDa protein, which has hampered analysis in the past. The ALMS1 protein is localized to the centrioles and the basal body of cilia and is involved in signaling processes, for example, TGF-ß signaling. However, the exact molecular function of ALMS1 at the basal body remains elusive and controversial. We recently demonstrated that protein complex analysis utilizing endogenously tagged cells provides an excellent tool to investigate protein interactions of ciliary proteins. Here, CRISPR/Cas9-mediated endogenously tagged ALMS1 cells were used for affinity-based protein complex analysis. Centrosomal and microtubule-associated proteins were identified, which are potential regulators of ALMS1 function, such as the centrosomal protein 70 kDa (CEP70). Candidate proteins were further investigated in ALMS1-deficient hTERT-RPE1 cells. Loss of ALMS1 led to shortened cilia with no change in structural protein localization, for example, acetylated and É£-tubulin, Centrin-3, or the novel interactor CEP70. Conversely, reduction of CEP70 resulted in decreased ALMS1 at the ciliary basal body. Complex analysis of CEP70 revealed domain-specific ALMS1 interaction involving the TPR-containing C-terminal (TRP-CT) fragment of CEP70. In addition to ALMS1, several ciliary proteins, including CEP135, were found to specifically bind to the TPR-CT domain. Data are available via ProteomeXchange with the identifier PXD046401. Protein interactors identified in this study provide candidate lists that help to understand ALMS1 and CEP70 function in cilia-related protein modification, cell death, and disease-related mechanisms.


Assuntos
Síndrome de Alstrom , Diabetes Mellitus Tipo 2 , Humanos , Síndrome de Alstrom/genética , Síndrome de Alstrom/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Obesidade , Tubulina (Proteína)
5.
Front Mol Biosci ; 10: 1268722, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38074101

RESUMO

The intraflagellar transport (IFT) machinery is essential for cilia assembly, maintenance, and trans-localization of signaling proteins. The IFT machinery consists of two large multiprotein complexes, one of which is the IFT-B. TTC30A and TTC30B are integral components of this complex and were previously shown to have redundant functions in the context of IFT, preventing the disruption of IFT-B and, thus, having a severe ciliogenesis defect upon loss of one paralog. In this study, we re-analyzed the paralog-specific protein complexes and discovered a potential involvement of TTC30A or TTC30B in ciliary signaling. Specifically, we investigated a TTC30A-specific interaction with protein kinase A catalytic subunit α, a negative regulator of Sonic hedgehog (Shh) signaling. Defects in this ciliary signaling pathway are often correlated to synpolydactyly, which, intriguingly, is also linked to a rare TTC30 variant. For an in-depth analysis of this unique interaction and the influence on Shh, TTC30A or B single- and double-knockout hTERT-RPE1 were employed, as well as rescue cells harboring wildtype TTC30 or the corresponding mutation. We could show that mutant TTC30A inhibits the ciliary localization of Smoothened. This observed effect is independent of Patched1 but associated with a distinct phosphorylated PKA substrate accumulation upon treatment with forskolin. This rather prominent phenotype was attenuated in mutant TTC30B. Mass spectrometry analysis of wildtype versus mutated TTC30A or TTC30B uncovered differences in protein complex patterns and identified an impaired TTC30A-IFT57 interaction as the possible link leading to synpolydactyly. We could observe no impact on cilia assembly, leading to the hypothesis that a slight decrease in IFT-B binding can be compensated, but mild phenotypes, like synpolydactyly, can be induced by subtle signaling changes. Our systematic approach revealed the paralog-specific influence of TTC30A KO and mutated TTC30A on the activity of PRKACA and the uptake of Smoothened into the cilium, resulting in a downregulation of Shh. This downregulation, combined with interactome alterations, suggests a potential mechanism of how mutant TTC30A is linked to synpolydactyly.

6.
Cells ; 12(22)2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37998397

RESUMO

Bardet-Biedl syndrome (BBS) is an archetypal ciliopathy caused by dysfunction of primary cilia. BBS affects multiple tissues, including the kidney, eye and hypothalamic satiety response. Understanding pan-tissue mechanisms of pathogenesis versus those which are tissue-specific, as well as gauging their associated inter-individual variation owing to genetic background and stochastic processes, is of paramount importance in syndromology. The BBSome is a membrane-trafficking and intraflagellar transport (IFT) adaptor protein complex formed by eight BBS proteins, including BBS1, which is the most commonly mutated gene in BBS. To investigate disease pathogenesis, we generated a series of clonal renal collecting duct IMCD3 cell lines carrying defined biallelic nonsense or frameshift mutations in Bbs1, as well as a panel of matching wild-type CRISPR control clones. Using a phenotypic screen and an unbiased multi-omics approach, we note significant clonal variability for all assays, emphasising the importance of analysing panels of genetically defined clones. Our results suggest that BBS1 is required for the suppression of mesenchymal cell identities as the IMCD3 cell passage number increases. This was associated with a failure to express epithelial cell markers and tight junction formation, which was variable amongst clones. Transcriptomic analysis of hypothalamic preparations from BBS mutant mice, as well as BBS patient fibroblasts, suggested that dysregulation of epithelial-to-mesenchymal transition (EMT) genes is a general predisposing feature of BBS across tissues. Collectively, this work suggests that the dynamic stability of the BBSome is essential for the suppression of mesenchymal cell identities as epithelial cells differentiate.


Assuntos
Síndrome de Bardet-Biedl , Humanos , Camundongos , Animais , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/metabolismo , Síndrome de Bardet-Biedl/patologia , Camundongos Knockout , Proteínas/metabolismo , Cílios/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo
7.
Drug Discov Today ; 28(11): 103757, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37657753

RESUMO

The complement system is involved in the pathogenesis of several ocular diseases, providing a rationale for the investigation of complement-targeting therapeutics for these conditions. Dry age-related macular degeneration, as characterised by geographic atrophy (GA), is currently the most active area of research for complement-targeting therapeutics, with a complement C3 inhibitor approved in the United States earlier this year marking the first approved therapy for GA. This review discusses the role of complement in ocular disease, provides an overview of the complement-targeting agents currently under development for ocular conditions, and reflects on the lessons that can be learned from the preclinical investigations and clinical trials conducted in this field to date.


Assuntos
Atrofia Geográfica , Degeneração Macular , Humanos , Degeneração Macular/tratamento farmacológico , Olho , Atrofia Geográfica/tratamento farmacológico , Atrofia Geográfica/etiologia , Atrofia Geográfica/patologia
8.
Hum Mol Genet ; 32(21): 3090-3104, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37555648

RESUMO

Ciliopathies are inherited disorders caused by defective cilia. Mutations affecting motile cilia usually cause the chronic muco-obstructive sinopulmonary disease primary ciliary dyskinesia (PCD) and are associated with laterality defects, while a broad spectrum of early developmental as well as degenerative syndromes arise from mutations affecting signalling of primary (non-motile) cilia. Cilia assembly and functioning requires intraflagellar transport (IFT) of cargos assisted by IFT-B and IFT-A adaptor complexes. Within IFT-B, the N-termini of partner proteins IFT74 and IFT81 govern tubulin transport to build the ciliary microtubular cytoskeleton. We detected a homozygous 3-kb intragenic IFT74 deletion removing the exon 2 initiation codon and 40 N-terminal amino acids in two affected siblings. Both had clinical features of PCD with bronchiectasis, but no laterality defects. They also had retinal dysplasia and abnormal bone growth, with a narrowed thorax and short ribs, shortened long bones and digits, and abnormal skull shape. This resembles short-rib thoracic dysplasia, a skeletal ciliopathy previously linked to IFT defects in primary cilia, not motile cilia. Ciliated nasal epithelial cells collected from affected individuals had reduced numbers of shortened motile cilia with disarranged microtubules, some misorientation of the basal feet, and disrupted cilia structural and IFT protein distributions. No full-length IFT74 was expressed, only truncated forms that were consistent with N-terminal deletion and inframe translation from downstream initiation codons. In affinity purification mass spectrometry, exon 2-deleted IFT74 initiated from the nearest inframe downstream methionine 41 still interacts as part of the IFT-B complex, but only with reduced interaction levels and not with all its usual IFT-B partners. We propose that this is a hypomorphic mutation with some residual protein function retained, which gives rise to a primary skeletal ciliopathy combined with defective motile cilia and PCD.


Assuntos
Cílios , Ciliopatias , Humanos , Transporte Biológico , Cílios/genética , Cílios/metabolismo , Ciliopatias/genética , Ciliopatias/metabolismo , Proteínas/genética , Síndrome , Mutação , Tórax/metabolismo , Flagelos/genética , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo
9.
Adv Exp Med Biol ; 1415: 9-13, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440007

RESUMO

Age-related macular degeneration (AMD) is a complex degenerative disease of the retina. Dysfunction of the retinal pigment epithelium (RPE) occurs in early stages of AMD, and progressive RPE atrophy leads to photoreceptor death and visual impairments that ultimately manifest as geographic atrophy (GA), one of the late-stage forms of AMD. AMD is caused by a combination of risk factors including aging, lifestyle choices, and genetic predisposition. A gene variant in the complement factor H gene (CFH) that leads to the Y402H polymorphism in the factor H protein (FH) confers the second highest risk for the development and progression of AMD. FH is a major negative regulator of the alternative pathway of the complement system, and the FH Y402H variant leads to increased complement activation, which is detectable in AMD patients. For this reason, various therapeutic approaches targeting the complement system have been developed, however, so far with very limited or no efficacy. Interestingly, recent studies suggest roles for FH beyond complement regulation. Here, we will discuss the noncanonical functions of FH in RPE cells and highlight the potential implications of those functions for future therapeutic approaches.


Assuntos
Fator H do Complemento , Degeneração Macular , Humanos , Fator H do Complemento/genética , Fator H do Complemento/metabolismo , Epitélio Pigmentado da Retina , Degeneração Macular/genética , Degeneração Macular/metabolismo , Ativação do Complemento/genética , Predisposição Genética para Doença
10.
Front Cell Dev Biol ; 11: 1199069, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37427378

RESUMO

The human Usher syndrome (USH) is the most common form of a sensory hereditary ciliopathy characterized by progressive vision and hearing loss. Mutations in the genes ADGRV1 and CIB2 have been associated with two distinct sub-types of USH, namely, USH2C and USH1J. The proteins encoded by the two genes belong to very distinct protein families: the adhesion G protein-coupled receptor ADGRV1 also known as the very large G protein-coupled receptor 1 (VLGR1) and the Ca2+- and integrin-binding protein 2 (CIB2), respectively. In the absence of tangible knowledge of the molecular function of ADGRV1 and CIB2, pathomechanisms underlying USH2C and USH1J are still unknown. Here, we aimed to enlighten the cellular functions of CIB2 and ADGRV1 by the identification of interacting proteins, a knowledge that is commonly indicative of cellular functions. Applying affinity proteomics by tandem affinity purification in combination with mass spectrometry, we identified novel potential binding partners of the CIB2 protein and compared these with the data set we previously obtained for ADGRV1. Surprisingly, the interactomes of both USH proteins showed a high degree of overlap indicating their integration in common networks, cellular pathways and functional modules which we confirmed by GO term analysis. Validation of protein interactions revealed that ADGRV1 and CIB2 mutually interact. In addition, we showed that the USH proteins also interact with the TRiC/CCT chaperonin complex and the Bardet Biedl syndrome (BBS) chaperonin-like proteins. Immunohistochemistry on retinal sections demonstrated the co-localization of the interacting partners at the photoreceptor cilia, supporting the role of USH proteins ADGRV1 and CIB2 in primary cilia function. The interconnection of protein networks involved in the pathogenesis of both syndromic retinal dystrophies BBS and USH suggest shared pathomechanisms for both syndromes on the molecular level.

11.
Metabolites ; 13(6)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37367859

RESUMO

Insights into the pathogenesis of age-related macular degeneration (AMD), a leading cause of blindness, point towards a complex interplay of genetic and lifestyle factors triggering various systemic pathways. This study aimed to characterize metabolomic profiles for AMD and to evaluate their position in the trias with genetics and lifestyle. This study included 5923 individuals from five European studies. Blood metabolomics were assessed using a nuclear magnetic resonance platform of 146 metabolites. Associations were studied using regression analyses. A genetic risk score (GRS) was calculated using ß-values of 49 AMD variants, a lifestyle risk score (LRS) using smoking and diet data, and a metabolite risk score (MRS) using metabolite values. We identified 61 metabolites associated with early-intermediate AMD, of which 94% were lipid-related, with higher levels of HDL-subparticles and apolipoprotein-A1, and lower levels of VLDL-subparticles, triglycerides, and fatty acids (false discovery rate (FDR) p-value < 1.4 × 10-2). Late AMD was associated with lower levels of the amino acids histidine, leucine, valine, tyrosine, and phenylalanine, and higher levels of the ketone bodies acetoacetate and 3-hydroxybutyrate (FDR p-value < 1.5 × 10-3). A favorable lifestyle characterized by a healthy diet was associated with higher levels of amino acids and lower levels of ketone bodies, while an unfavorable lifestyle, including smoking, showed opposite effects (FDR p-value < 2.7 × 10-2). The MRS mediated 5% of the effect of the GRS and 20% of that of the LRS on late AMD. Our findings show that metabolomic profiles differ between AMD stages and show that blood metabolites mostly reflect lifestyle. The severity-specific profiles spur further interest into the systemic effects related to disease conversion.

12.
Bioengineering (Basel) ; 10(6)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37370656

RESUMO

BACKGROUND: The electroretinogram (ERG) is an essential diagnostic tool for visual function, both in clinical and research settings. Here, we establish an advanced in vitro approach to assess cell-type-specific ERG signal components. METHODS: Retinal explant cultures, maintained under entirely controlled conditions, were derived from wild-type mice and rd10 rod- and cpfl1 cone-degeneration mouse models. Local micro-ERG (µERG) and simultaneous ganglion cell (GC) recordings were obtained from the retinal explants using multi-electrode arrays. Band-pass filtering was employed to distinguish photoreceptor, bipolar cell, amacrine cell (AC), and GC responses. RESULTS: Scotopic and photopic stimulation discriminated between rod and cone responses in wild-type and mutant retina. The 25 kHz sampling rate allowed the visualization of oscillatory potentials (OPs) in extraordinary detail, revealing temporal correlations between OPs and GC responses. Pharmacological isolation of different retinal circuits found that OPs are generated by inner retinal AC electrical synapses. Importantly, this AC activity helped synchronise GC activity. CONCLUSION: Our µERG protocol simultaneously records the light-dependent activities of the first-, second-, and third-order neurons within the native neuronal circuitry, providing unprecedented insights into retinal physiology and pathophysiology. This method now also enables complete in vitro retinal function testing of therapeutic interventions, providing critical guidance for later in vivo investigations.

13.
Methods Cell Biol ; 176: 199-216, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37164538

RESUMO

Several barriers prevent the delivery of nucleic acids to the retina and limit the application of established technologies, such as RNA interference (RNAi), in the study of retinae biology. Organotypic culture of retinal explants is a convenient method to decrease the complexity of the biological environment surrounding the retina while preserving most of its physiological features. Nevertheless, eliciting significant, non-toxic RNAi in retina explants is not straightforward. Retina explants are mainly constituted by neurons organized in discrete circuits embedded within a complex 3D extracellular matrix. About 70% of these neurons are post-mitotic ciliated cells that respond to light. Unfortunately, like the other cells of the retina, photoreceptors are refractory to transfection, and a toxic delivery of nucleic acid often results in permanent cell loss. RNAi has been applied to retina explants using electroporation, viral, and non-viral vectors but with reproducible, poor gene silencing efficiency. In addition, only a few superficial cells can be transduced/transfected in adult retina explants. Therefore, viruses are often injected into the eye of embryos prior to excision of the retina. However, embryonic explants are not the best model to study most retina diseases since even if they are viable for several weeks, the pathological phenotype often appears later in development. We describe a robust and straightforward method to elicit significant RNAi in adult retina explant using Reverse Magnetofection. This transfection method offers a simple tool for non-toxic gene knockdown of specific genes in adult retina explants by using cationic magnetic nanoparticles (MNPs) to complex and deliver short interfering-RNAs (siRNA) in retina cells under the action of a magnetic field.


Assuntos
Eletroporação , Retina , RNA Interferente Pequeno/genética , Transfecção , Interferência de RNA
14.
Life Sci Alliance ; 6(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37208194

RESUMO

The correct intraflagellar transport (IFT) assembly at the ciliary base and the IFT turnaround at the ciliary tip are key for the IFT to perform its function, but we still have poor understanding about how these processes are regulated. Here, we identify WDR31 as a new ciliary protein, and analysis from zebrafish and Caenorhabditis elegans reveals the role of WDR31 in regulating the cilia morphology. We find that loss of WDR-31 together with RP-2 and ELMD-1 (the sole ortholog ELMOD1-3) results in ciliary accumulations of IFT Complex B components and KIF17 kinesin, with fewer IFT/BBSome particles traveling along cilia in both anterograde and retrograde directions, suggesting that the IFT/BBSome entry into the cilia and exit from the cilia are impacted. Furthermore, anterograde IFT in the middle segment travels at increased speed in wdr-31;rpi-2;elmd-1 Remarkably, a non-ciliary protein leaks into the cilia of wdr-31;rpi-2;elmd-1, possibly because of IFT defects. This work reveals WDR31-RP-2-ELMD-1 as IFT and BBSome trafficking regulators.


Assuntos
Proteínas de Caenorhabditis elegans , Cílios , Proteínas Ativadoras de GTPase , Proteínas de Peixe-Zebra , Animais , Transporte Biológico , Caenorhabditis elegans/metabolismo , Cílios/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Peixe-Zebra , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Peixe-Zebra/metabolismo
15.
JCI Insight ; 8(10)2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37071472

RESUMO

Leber congenital amaurosis (LCA) is a group of inherited retinal diseases characterized by early-onset, rapid loss of photoreceptor cells. Despite the discovery of a growing number of genes associated with this disease, the molecular mechanisms of photoreceptor cell degeneration of most LCA subtypes remain poorly understood. Here, using retina-specific affinity proteomics combined with ultrastructure expansion microscopy, we reveal the structural and molecular defects underlying LCA type 5 (LCA5) with nanoscale resolution. We show that LCA5-encoded lebercilin, together with retinitis pigmentosa 1 protein (RP1) and the intraflagellar transport (IFT) proteins IFT81 and IFT88, localized at the bulge region of the photoreceptor outer segment (OS), a region crucial for OS membrane disc formation. Next, we demonstrate that mutant mice deficient in lebercilin exhibited early axonemal defects at the bulge region and the distal OS, accompanied by reduced levels of RP1 and IFT proteins, affecting membrane disc formation and presumably leading to photoreceptor death. Finally, adeno-associated virus-based LCA5 gene augmentation partially restored the bulge region, preserved OS axoneme structure and membrane disc formation, and resulted in photoreceptor cell survival. Our approach thus provides a next level of assessment of retinal (gene) therapy efficacy at the molecular level.


Assuntos
Amaurose Congênita de Leber , Animais , Camundongos , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/terapia , Amaurose Congênita de Leber/metabolismo , Axonema/genética , Axonema/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Células Fotorreceptoras/metabolismo
16.
Front Cell Dev Biol ; 11: 1113656, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36776558

RESUMO

Establishment and maintenance of the primary cilium as a signaling-competent organelle requires a high degree of fine tuning, which is at least in part achieved by a variety of post-translational modifications. One such modification is ubiquitination. The small and highly conserved ubiquitin protein possesses a unique versatility in regulating protein function via its ability to build mono and polyubiquitin chains onto target proteins. We aimed to take an unbiased approach to generate a comprehensive blueprint of the ciliary ubiquitinome by deploying a multi-proteomics approach using both ciliary-targeted ubiquitin affinity proteomics, as well as ubiquitin-binding domain-based proximity labelling in two different mammalian cell lines. This resulted in the identification of several key proteins involved in signaling, cytoskeletal remodeling and membrane and protein trafficking. Interestingly, using two different approaches in IMCD3 and RPE1 cells, respectively, we uncovered several novel mechanisms that regulate cilia function. In our IMCD3 proximity labeling cell line model, we found a highly enriched group of ESCRT-dependent clathrin-mediated endocytosis-related proteins, suggesting an important and novel role for this pathway in the regulation of ciliary homeostasis and function. In contrast, in RPE1 cells we found that several structural components of caveolae (CAV1, CAVIN1, and EHD2) were highly enriched in our cilia affinity proteomics screen. Consistently, the presence of caveolae at the ciliary pocket and ubiquitination of CAV1 specifically, were found likely to play a role in the regulation of ciliary length in these cells. Cilia length measurements demonstrated increased ciliary length in RPE1 cells stably expressing a ubiquitination impaired CAV1 mutant protein. Furthermore, live cell imaging in the same cells revealed decreased CAV1 protein turnover at the cilium as the possible cause for this phenotype. In conclusion, we have generated a comprehensive list of cilia-specific proteins that are subject to regulation via ubiquitination which can serve to further our understanding of cilia biology in health and disease.

17.
Cells ; 12(2)2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36672247

RESUMO

Mutations in PDE6D impair the function of its cognate protein, phosphodiesterase 6D (PDE6D), in prenylated protein trafficking towards the ciliary membrane, causing the human ciliopathy Joubert Syndrome (JBTS22) and retinal degeneration in mice. In this study, we purified the prenylated cargo of PDE6D by affinity proteomics to gain insight into PDE6D-associated disease mechanisms. By this approach, we have identified a specific set of PDE6D-interacting proteins that are involved in photoreceptor integrity, GTPase activity, nuclear import, or ubiquitination. Among these interacting proteins, we identified novel ciliary cargo proteins of PDE6D, including FAM219A, serine/threonine-protein kinase NIM1 (NIM1K), and ubiquitin-like protein 3 (UBL3). We show that NIM1K and UBL3 localize inside the cilium in a prenylation-dependent manner. Furthermore, UBL3 also localizes in vesicle-like structures around the base of the cilium. Through affinity proteomics of UBL3, we confirmed its strong interaction with PDE6D and its association with proteins that regulate small extracellular vesicles (sEVs) and ciliogenesis. Moreover, we show that UBL3 localizes in specific photoreceptor cilium compartments in a prenylation-dependent manner. Therefore, we propose that UBL3 may play a role in the sorting of proteins towards the photoreceptor outer segment, further explaining the development of PDE6D-associated retinal degeneration.


Assuntos
Cílios , Degeneração Retiniana , Humanos , Animais , Camundongos , Cílios/metabolismo , Degeneração Retiniana/metabolismo , Proteínas/metabolismo , Retina/metabolismo , Transporte Proteico , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/metabolismo
18.
J Control Release ; 354: 323-336, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36641118

RESUMO

Diseases of the posterior eye segment are often characterized by intraocular inflammation, which causes, in the long term, severe impairment of eye functions and, ultimately, vision loss. Aimed at enhancing the delivery of anti-inflammatory drugs to the posterior eye segment upon intravitreal administration, we developed liposomes with an engineered surface to control their diffusivity in the vitreous and retina association. Hydrogenated soybean phosphatidylcholine (HSPC)/cholesterol liposomes were coated with (agmatinyl)6-maltotriosyl-acetamido-N-(octadec-9-en-1-yl)hexanamide (Agm6-M-Oleate), a synthetic non-peptidic cell penetration enhancer (CPE), and/or 5% of mPEG2kDa-DSPE. The zeta potential of liposomes increased, and the mobility in bovine vitreous and colloidal stability decreased with the Agm6-M-Oleate coating concentration. Oppositely, mPEG2kDa-DSPE decreased the zeta potential of liposomes and restored both the diffusivity and the stability in vitreous. Liposomes with 5 mol% Agm6-M-Oleate coating were well tolerated by ARPE-19 retina cells either with or without mPEG2kDa-DSPE, while 10 mol% Agm6-M-Oleate showed cytotoxicity. Agm6-M-Oleate promoted the association of liposomes to ARPE-19 cells with respect to plain liposomes, while mPEG2kDa-DSPE slightly reduced the cell interaction. Dexamethasone hemisuccinate (DH) was remotely loaded into liposomes with a loading capacity of ∼10 wt/wt%. Interestingly, mPEG2kDa-DSPE coating reduced the rate of DH release and enhanced the disposition of Agm6-M-Oleate coated liposomes in the ARPE-19 cell cytosol resulting in a more efficient anti-inflammatory effect. Finally, mPEG2kDa-DSPE enhanced the association of DH-loaded Agm6-M-Oleate coated liposomes to explanted rat retina, which reflected in higher viability of inner and outer nuclear layer cells.


Assuntos
Lipossomos , Ácido Oleico , Animais , Bovinos , Ratos , Polietilenoglicóis , Peptídeos , Dexametasona , Propriedades de Superfície
19.
Artigo em Inglês | MEDLINE | ID: mdl-36122932

RESUMO

The precise processes causing photoreceptor cell death in retinal degeneration (RD) are still largely unknown but are likely to follow a variety of degenerative mechanisms. While different genetic insults can trigger distinct molecular pathways, eventually these may converge into a limited number of common cell death mechanisms. These mechanisms often involve deregulation of cyclic guanosine monophosphate (cGMP)-signaling and proteostasis, which both may increase photoreceptor energy expenditure. Comprehensive information on these mechanisms may allow for targeted interventions to delay or prevent photoreceptor loss. Here, we review the current knowledge on photoreceptor degenerative mechanisms, focusing on processes triggered by aberrant cGMP-signaling, proteostasis, and energy metabolism. Afterward, we discuss how these pathways could potentially be used to treat photoreceptor degeneration, highlighting data from a number of recent studies on inhibitory cGMP analogs, proteostasis blockers, and interventions aimed at fortifying energetic status. Finally, we provide perspectives on how such experimental approaches could be translated into future clinical applications.


Assuntos
Degeneração Retiniana , Humanos , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Retina/metabolismo , Neuroproteção , Células Fotorreceptoras/metabolismo , Morte Celular
20.
Prog Retin Eye Res ; 96: 101154, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36513584

RESUMO

Despite comprehensive research efforts over the last decades, the pathomechanisms of age-related macular degeneration (AMD) remain far from being understood. Large-scale genome wide association studies (GWAS) were able to provide a defined set of genetic aberrations which contribute to disease risk, with the strongest contributors mapping to distinct regions on chromosome 1 and 10. While the chromosome 1 locus comprises factors of the complement system with well-known functions, the role of the 10q26-locus in AMD-pathophysiology remains enigmatic. 10q26 harbors a cluster of three functional genes, namely PLEKHA1, ARMS2 and HTRA1, with most of the AMD-associated genetic variants mapping to the latter two genes. High linkage disequilibrium between ARMS2 and HTRA1 has kept association studies from reliably defining the risk-causing gene for long and only very recently the genetic risk region has been narrowed to ARMS2, suggesting that this is the true AMD gene at this locus. However, genetic associations alone do not suffice to prove causality and one or more of the 14 SNPs on this haplotype may be involved in long-range control of gene expression, leaving HTRA1 and PLEKHA1 still suspects in the pathogenic pathway. Both, ARMS2 and HTRA1 have been linked to extracellular matrix homeostasis, yet their exact molecular function as well as their role in AMD pathogenesis remains to be uncovered. The transcriptional regulation of the 10q26 locus adds an additional level of complexity, given, that gene-regulatory as well as epigenetic alterations may influence expression levels from 10q26 in diseased individuals. Here, we provide a comprehensive overview on the 10q26 locus and its three gene products on various levels of biological complexity and discuss current and future research strategies to shed light on one of the remaining enigmatic spots in the AMD landscape.


Assuntos
Degeneração Macular , Serina Endopeptidases , Humanos , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Estudo de Associação Genômica Ampla , Proteínas/genética , Proteínas/metabolismo , Degeneração Macular/genética , Degeneração Macular/metabolismo , Regulação da Expressão Gênica , Polimorfismo de Nucleotídeo Único , Genótipo , Predisposição Genética para Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...